Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.
نویسندگان
چکیده
To assess the role of the purine nucleotide cycle in human skeletal muscle function, we evaluated 10 patients with AMP deaminase deficiency (myoadenylate deaminase deficiency; MDD). 4 MDD and 19 non-MDD controls participated in an exercise protocol. The latter group was composed of a patient cohort (n = 8) exhibiting a constellation of symptoms similar to those of the MDD patients, i.e., postexertional aches, cramps, and pains; as well as a cohort of normal, unconditioned volunteers (n = 11). The individuals with MDD fatigued after performing only 28% as much work as their non-MDD counterparts. Muscle biopsies were obtained from the four MDD patients and the eight non-MDD patients at rest and following exercise to the point of fatigue. Creatine phosphate content fell to a comparable extent in the MDD (69%) and non-MDD (52%) patients at the onset of fatigue. Following exercise the 34% decrease in ATP content of muscle from the non-MDD subjects was significantly greater than the 6% decrease in ATP noted in muscle from the MDD patients (P = 0.048). Only one of four MDD patients had a measurable drop in ATP compared with seven of eight non-MDD patients. At end-exercise the muscle content of inosine 5'-monophosphate (IMP), a product of AMP deaminase, was 13-fold greater in the non-MDD patients than that observed in the MDD group (P = 0.008). Adenosine content of muscle from the MDD patients increased 16-fold following exercise, while there was only a twofold increase in adenosine content of muscle from the non-MDD patients (P = 0.028). Those non-MDD patients in whom the decrease in ATP content following exercise was measurable exhibited a stoichiometric increase in IMP, and total purine content of the muscle did not change significantly. The one MDD patient in whom the decrease in ATP was measurable, did not exhibit a stoichiometric increase in IMP. Although the adenosine content increased 13-fold in this patient, only 48% of the ATP catabolized could be accounted for by the combined increases of adenosine, inosine, hypoxanthine, and IMP. Studies performed in vitro with muscle samples from seven MDD and seven non-MDD subjects demonstrated that ATP catabolism was associated with a fivefold greater increase in IMP in non-MDD muscle. There were significant increases in AMP and ADP content of the muscle from MDD patients following ATP catabolism in vitro, while there was no detectable increase in AMP or ADP in non-MDD muscle. Adenosine content of MDD muscle increased following ATP catabolism, but there was no detectable increase in adenosine content of non-MDD muscle following ATP catabolism in vitro. These studies demonstrate that AMP deaminase deficiency leads to reduced entry of adenine nucleotides into the purine nucleotide cycle during exercise. We postulate that the resultant disruption of the purine nucleotide cycle accounts for the muscle dysfunction observed in these patients.
منابع مشابه
Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency.
A patient with symptoms of easy fatigability, postexercise myalgias, and delayed recovery of muscle strength after activity is described. Skeletal muscle from this patient had <1.0% normal myoadenylate deaminase activity and NH(3) was not released from muscle after ischemic exercise. In association with this enzyme deficiency, exercise led to a >90% reduction in muscle content of adenine nucleo...
متن کاملVitamin C deficiency activates the purine nucleotide cycle in zebrafish.
Vitamin C (ascorbic acid, AA) is a cofactor for many important enzymatic reactions and a powerful antioxidant. AA provides protection against oxidative stress by acting as a scavenger of reactive oxygen species, either directly or indirectly by recycling of the lipid-soluble antioxidant, α-tocopherol (vitamin E). Only a few species, including humans, guinea pigs, and zebrafish, cannot synthesiz...
متن کاملChronic Non-Exertional Myalgia and Myoadenylate Deaminase Deficiency: a Possible Association
UNLABELLED Myoadenylate deaminase deficiency is noted in skeletal muscles. It generally presents with exertional myalgias, fatigue and weakness. We present a patient who complained of constant pain unrelated to activity with biopsy finding consistent of myoadenylate deaminase deficiency. KEYWORDS Myoadenylate deaminase deficiency; Myalgia; Pain.
متن کاملMyotonia congenita and myoadenylate deaminase deficiency: case report.
Approximately 1-2% of the population has a deficiency of the enzyme myoadenylate deaminase. Early reports suggested that patients with myoadenylate deaminase deficiency had various forms of myalgia, and exercise intolerance. However, a deficiency of the enzyme has been described in many conditions, including myopathies, neuropathies, and motor neuron disease. We report a patient with clinical d...
متن کاملAdenosine monophosphate deaminase deficiency
Keywords Disease name and synonyms AMP deaminase AMP deaminase deficiency Diagnosis criteria-definition Differential diagnosis Prevalence Clinical description Management Etiology Diagnostic methods Unresolved questions References Abstract There are two types of adenosine monophosphate deaminase deficiency. Myoadenylate deaminase deficiency is an inherited disorder of muscular energy metabolism ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 73 3 شماره
صفحات -
تاریخ انتشار 1984